Tetrahedron Letters, Vol.26, No.41, pp 5077-5080, 1985 0040-4039/85 \$3.00 + .00 Printed in Great Britain ©1985 Pergamon Press Ltd.

REDUCTION OF BICYCLO[3.2.0]HEPT-2-EN-6-ONE AND 7,7-DIMETHYLBICYCLO[3.2.0]HEPT-2-EN-6-ONE USING DEHYDROGENASE ENZYMES AND THE FUNGUS MORTIERELLA RAMANNIANA

Suzanne Butt¹, H. Geoff Davies², Michael J. Dawson³, Gordon C. Lawrence³, Jeff Leaver³, Stanley M. Roberts¹, Michael K. Turner³, Basil J. Wakefield⁴, Wilfred F. Wall³, and John A. Winders⁴

¹Department of Microbiological Chemistry, ²Department of Medicinal Chemistry, and ³Biotechnology Department, Glaxo Group Research, Greenford, Middlesex, UB6 OHE, U.K. ⁴Department of Chemistry and Applied Chemistry, University of Salford, Salford, M5 4WT, U.K.

SUMMARY: Bicyclo[3.2.0]hept-2-en-6-one (1) was reduced with an alcohol dehydrogenase from Thermoanaerobium brockii and a whole cell system (M. ramanniana) with excellent substrate enantioselectivity: 7,7-dimethylbicyclo[3.2.0]hept-2-en-6-one (2) was similarly reduced using the 3α,20β-hydroxysteroid dehydrogenase from Streptomyces hydrogenans while M. ramanniana furnished both 65-alcohols (4a), (6b) with high optical purity.

The synthetic utility of bicyclo[3.2.0] heptenones has been recognised for some time¹. In recent years this class of compound has been used as a starting point for the synthesis of a wide range of natural products including boonein², hirsutic acid-C³, hybridalactone⁴, multifidene⁵, pentalene⁶, pentalenolactones E and F⁷, prostaglandins^{8,9}, and the ophiobiolin skeleton¹⁰.

In order to enhance the usefulness of the bicyclo[3.2.0]-ring system for the preparation of <u>optically active</u> natural products, a general method of resolution of these bicyclic ketones would be valuable. Over the years, a number of procedures have been employed to prepare bicycloheptanones in optically active form¹¹. However, none of these methods can be used to prepare a <u>wide range</u> of chiral bicycloheptanones with good optical purity. We have investigated the use of dehydrogenase enzymes and a microorganism for stereoselective and enantioselective reduction of two bicycloheptenones.

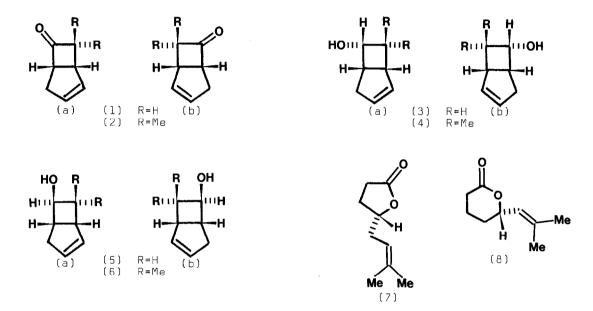
Bicyclo[3.2.0]hept-2-en-6-one (1) was reduced to the corresponding <u>6endo-alcohol¹²</u> by three dehydrogenase enzymes (Table). Isolation of this alcohol from the reactions catalysed by horse liver alcohol dehydrogenase (HLAD) and 3α ,20 β -hydroxysteroid dehydrogenase (3α ,20 β -HSD) gave material with low optical rotation. In contrast, incubation of the substrate (1) with an alcohol dehydrogenase from <u>I. brockii</u> (Tab.) gave alcohol (3b) in high optical purity as assessed by optical rotation $[\alpha]_D^{21} = +69^0$ (c, 1.2 CHCl₃)¹³ and by spectroscopy after formation of Mosher's ester¹⁴. Unreacted ketone was also found to be optically active¹⁵.

50	7	8	

TABLE

Substrate	Dehydrogenase Enzyme	Cofactor (Recycling Agent)	Alcohol Produced	Predominant Enantiomer ^a 〈Enantioselectivity〉
1	HLAD (E.C. 1.1.1.1)	NADH (EtOH)	3	3b (<10% e.e.)
1	3α,20β-H5D (E.C. 1.1.1.53)	NADH (glucose/glucose dehydrogenase)	3	3b (<10% e.e.)
1	TabAD (E.C. 1.1.1.1)	NADPH (propan-2-ol)	3	3b (>95% e.e.)
2	HLAD	NADH (EtOH)	No reaction	_
2	TabAD	NADPH (propan-2-ol)	No reaction	-
2	3α,20β-HSD	NADH (HLAD, EtOH)	4	4a (>95% e.e.)
2	3α,20β-HSD	NADH (glucose/glucose dehydrogenase)	4	4a (>95% e.e.)

Reduction of Bicyclo[3.2.0]hept-2-en-6-one (1) and 7,7-Dimethylbicyclo[3.2.0]hept-2-en-6one (2) using Some Dehydrogenase Enzymes


^aAfter 10-20% conversion

7,7-Dimethylbicyclo[3.2.0]hept-2-en-6-one (2) was unaffected by HLAD and the dehydrogenase from Tab. 3α ,206-HSD catalysed the reaction of (2) to a single product, identical by t.l.c. and h.p.l.c. to an authentic sample of the <u>6endo-alcohol</u> (4)¹⁶. A preparative scale reaction gave, after column chromatography, optically pure alcohol (4a) $[\alpha]_D^{21}$ -145°. The optical purity was assessed by g.l.c. of the isopropylurethane derivative over a chiral stationary phase¹⁷ and the absolute configuration was established by conversion into the lactone (7)¹⁸.

We have shown previously¹⁹ that the fungus <u>M. ramanniana</u> reduces one enantiomer of bicycloheptenone to give the <u>endo-alcohol</u> (3b) (e.e. = 90%) and recovered ketone (la) (e.e. = 80%). Incubation of <u>M. ramanniana</u> (ca. 125 g wet wt./litre) with the 7,7-dimethylbicycloheptenone (2) (1-2 g/litre) gave not only the corresponding <u>6endo-alcohol</u> (4) but also the <u>6exo-alcohol</u> (6). At low substrate concentrations (1-2 g/ litre) the rate of reduction of 7,7-dimethylbicycloheptenone was 50-70% the rate of reduction of the unsubstituted bicycloheptenone. At a higher substrate concentration (5 g/ litre), reduction of the ketone (2) proceeded at a markedly slower rate and only the <u>6endo-alcohol</u> was detected. A large scale run using freshly prepared <u>M. ramanniana</u> (ca. 200 g wet wt./litre) and dimethylbicycloheptenone (1 g/litre) gave a 50% total yield of equal quantities of the alcohols and g.l.c. analysis as described above showed that the endo-alcohol contained the

enantiomers (4a) and (4b) in the ratio 9:1. The <u>exo</u>-alcohol was of high optical purity $[\alpha]_D^{23} = \pm 109^0$ (c, 1.1 CHCl₃) with the enantiomer (6b) predominant (>95%). The absolute configuration of the alcohol (6b) was established by conversion into the lactone (8)¹⁸.

The lactones (7) and (8) have been used to prepare the optically active natural products eldanolide and leukotriene- B_4 respectively¹⁸, while the alcohol (3a) has been used to prepare prostaglandin- F_2^{α} in the naturally occurring configuration²⁰.

We thank Dr. V.E. Wilson, Mr. I.M. Mutton and Mr. K.P. Ayers (Physical Chemistry Department, Glaxo Group Research, Greenford) for physical measurements and Glaxo Group Research for a Research Fellowship (to J.A. Winders).

References

1.	S.M. Ali, T.V. Lee, and S.M. Roberts, <u>Synthesis</u> , 1977, 155.
2.	T.V. Lee, J. Toczek, and S.M. Roberts, <u>J. Chem. Soc., Chem. Commun</u> ., 1985, 371.
3.	A.E. Greene, MJ. Luche, and JP. Depres, <u>J. Am. Chem. Soc</u> ., 1983, <u>105</u> , 2435.
4.	E.J. Corey and B. De, <u>J. Am. Chem. Soc</u> ., 1984, <u>106</u> , 2735.
5.	J.E. Burks and J.K. Crandall, <u>J. Org. Chem</u> ., 1984, <u>49</u> , 4663.
6.	G.D. Annis and L.A. Paquette, <u>J. Am. Chem. Soc</u> ., 1982, <u>104</u> , 4504.
7.	D.E. Cane and P.J. Thomas, <u>J. Am. Chem. Soc</u> ., 1984, <u>106</u> , 5295.
8.	R.F. Newton and S.M. Roberts, <u>Tetrahedron</u> , 1980, <u>36</u> , 2163; see also T.W. Hart and MT. Comte, <u>Tetrahedron Letters</u> , 1985, <u>26</u> , 2713.

- 9. B.F. Riefling, Tetrahedron Letters, 1985, 26, 2063.
- 10. L.A. Paquette, D.R. Andrews, and J.P. Springer, J. Org. Chem., 1983, 48, 1147.
- 11. These methods include:
 - a) Reaction of racemic ketone with chiral amino alcohol and separation of the diastereoisomeric oxazolidines, reference 9.
 - b) Formation of azomethine using excess racemic ketone and optically active amine, distillation of volatile ketone and hydrolysis of the Schiff's base, U.A. Huber and A.S. Dreiding, <u>Helv. Chim. Acta</u>, 1970, 53, 495.
 - c) Use of a chiral ketenimine or ketenacetal to induce asymmetry into the [2+2]cycloaddition reaction leading to the bicyclic ketone, C. Houge, A.M. Frisque-Hesbain, A. Mockel, L. Ghosez, J.P. Declercq, G. Germain and M. Van Meerssche, J. Am. Chem. Soc., 1982, 104, 2920; K. Bruneel, D. De Keukeleire, and M. Vandewalle, J. Chem. Soc., Perkin Trans. 1, 1984, 1697.
 - d) Formation of the bisulphite addition complex of the bicyclic ketone and resolution of the adduct using an optically active base, E.W. Collington, C.J. Wallis, and I. Waterhouse, <u>Tetrahedron Letters</u>, 1983, 24, 3125; H. Greuter, J. Dingwall, P. Martin, and D. Bellus, Helv. Chim. Acta, 1981, 64, 2812.
 - e) Reaction of the ketone with resolved N,S-dimethyl-S-phenyl sulphoximine followed by thermolysis of the separated diastereomers, C.R. Johnson and J.R. Zeller, <u>Tetrahedron</u>, 1984, 40, 1225.
- 12. J.A. Berson and J.W. Patton, J. Am. Chem. Soc., 1962, 84, 3406.
- 13. R.F. Newton, J. Paton, D.P. Reynolds, S. Young and S.M. Roberts, <u>J. Chem. Soc.</u>, Chem. Commun., 1979, 908.
- 14. J.A. Dale, D.L. Dull, and H.S. Mosher, <u>J. Org. Chem.</u>, 1969, 34, 2543.
- 15. <u>N.B.</u> Our earlier assignment (R.F. Newton, D.P. Reynolds, J. Davies, P.B. Kay, S.M. Roberts and T.W. Wallace, <u>J. Chem. Soc.</u>, <u>Perkin Trans. 1</u>, 1983, 683) is in error. Ketone (la) has $[\alpha]_D^{D_3} = +60^{\circ}$. The error is duplicated in ref. 19.
- 16. Sodium borohydride reduction of ketone (2) gave two products in the ratio 10:1. The major, less polar product was assigned as the 6endo-alcohol (4) ν_{max} 3420 cm⁻¹; δ (CDCl₃) <u>inter alia</u> 3.82 (1H, d, J_{6 5} 8.2Hz, H-6), 2.6 (1H, m, H-5). The more polar product was assigned as the 6exo-alcohol (6) ν_{max} 3400 cm⁻¹; δ (CDCl₃) <u>inter alia</u> 3.5 (1H, d, J_{6 5} 3.5Hz, H-6), 2.6 (1H, m, H-5).
- 17. G.l.c. over a Chirasil-Valine column at 110⁰C with a helium flow of 2.0 ml/min.
- H.G. Davies, S.M. Roberts, B.J. Wakefield, and J.A. Winders, <u>J. Chem. Soc., Chem.</u> <u>Commun.</u>, 1985, in press.
- M.J. Dawson, G.C. Lawrence, G. Lilley, M. Todd, D. Noble, S.M. Green, S.M. Roberts, T.W. Wallace, R.F. Newton, M.C. Carter, P. Hallett, J. Paton, D.P. Reynolds and S. Young, <u>J. Chem. Soc.</u>, Perkin Trans. 1, 1983, 2119.
- J. Davies, S.M. Roberts, D.P. Reynolds, and R.F. Newton, <u>J. Chem. Soc., Perkin</u> <u>Trans. 1</u>, 1981, 1317.

(Received in UK 31 July 1985)